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Aeromonas species are ubiquitous bacteria in terrestrial and aquatic milieus. They are becoming renowned as enteric pathogens of
serious public health concern as they acquire a number of virulence determinants that are linked with human diseases, such
as gastroenteritis, soft-tissue, muscle infections, septicemia, and skin diseases. Proper sanitary procedures are essential in the
prevention of the spread of Aeromonas infections. Oral fluid electrolyte substitution is employed in the prevention of dehydration,
and broad-spectrum antibiotics are used in severe Aeromonas outbreaks. This review presents an overview of emerging Aeromonas
infections and proposes the need for actions necessary for establishing adequate prevention measures against the infections.

1. Introduction

The aeromonads are Gram-negative, rod-shaped, facultative
anaerobic, nonspore forming bacteria that are autochtho-
nous and widely distributed in aquatic environments [1].
The genus is made up of psychrophiles and mesophiles
from soil and aquatic environments and causes different
kinds of diseases to many warm and cold-blooded animals.
Several reconsiderations on the taxonomy and nomenclature
of Aeromonas genus have been carried out over the years
[2-4]. Although Aeromonas was initially positioned in
the family Vibrionaceae, successive phylogenetic analyses
point out that the genus Aeromonas is not closely related to
vibrios resulting in the relocation of Aeromonas from the
family Vibrionaceae to a new family, the Aeromonadaceae
[2, 5]. The aeromonads and Enterobacteriaceae share many
biochemical characteristics but are easily differentiated by
oxidase test for which the aeromonads are positive. Generally,
members of the genus are characteristically divided into three
biochemically differentiated groups (Aeromonas hydrophila,
Aeromonas caviae, and Aeromonas sobria), and these contain

a number of genomospecies, and recently, new species have
been added [3, 6]. Currently, the genus comprises of 17
DNA hybridization groups (HGs) or genomospecies and 14
phenospecies [7].

Aeromonas species are known as causative agents of a
wide spectrum of diseases in man and animals [8]. Some
studies have shown that some motile Aeromonas species
are becoming food and waterborne pathogens of increasing
importance [9, 10]. They have been associated with several
food-borne outbreaks and are progressively being isolated
from patients with traveler’s diarrhea [11]. Presently, as a
putatively emerging enteric pathogen, Aeromonas species
have the inherent capability to grow in water distribution
systems, especially in biofilms, where they may be resistant to
chlorination [12]. Also, A. hydrophila is listed in the Contam-
inant Candidate List, and Environmental Protection Agency
Method 1605 has validated its detection and enumeration in
drinking water system [13].

In 1968, von Graevenitz and Mensch reviewed 30 cases
of Aeromonas infections or colonization, which created
awareness on their recognition as human pathogens and
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suggested that some aeromonads may be associated with
gastrointestinal diseases. Aeromonas species are commonly
isolated from fecal sample of children under the age of
five years, whereas their isolation from other body sites
usually occurred in adult populations. Aeromonads are
known to cause severe diarrheal disease of short duration or
chronic loose stools in children, the elderly, or the immuno-
compromised individuals [1], and they have been implicated
in travelers’ diarrhea. The bacteria also cause cellulitis
or wound infections due of traumatic injury in aqueous
environment [14]. They also cause septicemia related to
underlying diseases such as leukemia, cancer, cirrhosis, and
various infections such as urinary tract infections, surgical
wound infections, meningitis, peritonitis, and endocarditis
[15]. Some predisposing factors for Aeromonas infection
include hepatic diseases, diabetes, hematologic malignancies,
hepatobiliary, and renal diseases [15].

Environmental source of Aeromonas pathogen involved
in gastrointestinal infection was first reported by Holmberg
and coworkers [16]. It was presented as an epidemiological
study to backup the significance of untreated well water
as a source of infection in patients with diarrheal disease.
Phenotypic identification was relied upon before 1990s for
the identification of Aeromonas, while several studies pub-
lished thereafter identified isolates to hybridization groups.
Hybridization groups containing virulence factors may be
found in environmental and foods samples, but acromonads
will only cause gastroenteritis when their presence goes
beyond an infective dose for a vulnerable host [17, 18]. In this
paper, we present a general overview of Aeromonas species in
the light of the increasing report of this group of bacteria as
emerging pathogens and their effect on public health.

2. Taxonomy and Classification

Aeromonads were divided into two major groups based
on physiological properties and host range until the late
1970s. Motile aeromonads grow at optimum temperature
of 35-37°C and those predicted to cause human infections
were recognized to be A. hydrophila. Nonmotile aeromonad
which grows at 22-28°C and causes infections in fishes is
called Aeromonas salmonicida [14]. Phenotypic markers for
their differentiation include optimum growth temperature,
motility, production of indole, and elaboration of a melanin-
like pigment on tyrosine agar [7, 14]. Thereafter, the genus
Aeromonas has advanced with the addition of new species
and the reclassification of preexisting taxa [19]. In the
past, Aeromonas species were placed alongside Vibrio species
and Plesiomonas shigelloides in the family Vibrionaceae.
However, genetic studies provide enough facts to support
the placement of aeromonads in a family of their own called
Aeromonadaceae [2].

The current classification of the genus Aeromonas is
based on DNA-DNA hybridization and 16S ribosomal DNA
relatedness, and the genera of the family Aeromonadaceae
now include Oceanimonas, Aeromonas, Tolumonas (incertae
sedis), and Oceanisphaera, [7]. The existing genomospecies
and phenospecies within the genus Aeromonas are as listed in
Table 1.
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3. Aeromonas Species

The genus Aeromonas are made up of straight, coccobacil-
lary-to-bacillary Gram-negative bacteria with surrounding
ends measuring 0.3-1.0 x 1.0-3.5um [7]. Most motile
strains produce a single polar flagellum, while peritrichous or
lateral flagella may be formed on solid media in some species
[27]. Aeromonas species are facultative anaerobic, catalase,
and oxidase positive, and chemoorganotrophic. They pro-
duce diverse kinds of extracellular hydrolytic enzymes such
as arylamidases, esterases, amylase, elastase, deoxyribonu-
clease, chitinase, peptidases, and lipase [14, 19] and grow
optimally at temperature ranges of between 22°C and 35°C,
but growth can also occur at 0—45°C in a few species [8].
Some species, such as A. salmonicida strains, do not grow
at 35°C [7]. All Aeromonas resist pH ranges from 4.5 to 9
but the optimum pH range is 5.5 to 9 and optimum sodium
chloride concentration range is 0 to 4% [28].

Aeromonas’ resistance to vibrostatic compound O/129
(150 yg) and variable presence of ornithine decarboxylase
activities differentiates the genus from Plesiomonas and
Vibrio [14]. Other important distinguishing qualities include
their inability to grow in the presence of 6.5% sodium
chloride; ability to liquefy gelatin; inability to ferment i-
inositol; negative string test. Some phenotypic characteristics
include an inability to grow on thiosulfate citrate bile salts
sucrose agar, and ability of most but not all Aeromonas
species to ferment D-mannitol and sucrose [27]. The bio-
chemical characteristics of Aeromonas species are as shown in
Table 2.

A number of aeromonads are pathogenic for humans,
and most human clinical isolates belong to hybridization
groups (HGs) HG-1, HG-4, HG-8, HG-9, HG-10, HG-
12, or HG-14 [14, 29]. The proportion of strains within
these hybridization groups (HGs) that are capable of causing
human disease is not well recognized. HG-2, HG-3, HG-
5, HG-6, HG-7, HG-11, HG-15, HG-16, and HG-17 are
isolated from the terrestrial or aquatic environment or
from unhealthy animals, and they are not regarded as
human pathogens [29]. Those capable of causing diseases in
human are associated with a variety of infections including
septicemia, meningitis, wound infections, peritonitis, and
hepatobiliary infections [6].

4. Occurrence of Aeromonas Species

Aeromonas species are found globally in surface water,
ground water, chlorinated drinking water, nonchlorinated
drinking water, bottled mineral water [5, 12, 30], and broad
range of foods [31]. They are found in the intestinal tract of
humans and animals, raw sewage, sewage effluents, sewage-
contaminated waters, and activated sludge [32, 33].

4.1. Occurrence of Aeromonas in Aquatic Environment.
Aeromonas species have been found in chlorinated drinking
water supplies in several countries [34, 35], and typically of
densities less than 10 cfu/mL in drinking water distribution
systems. They occur in distribution system biofilms where
they may be protected from disinfection [12], and multiple
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TaBLE 1: Hybridization groups (genomospecies) and phenospecies of the genus Aeromonas.

DNA hybridiza-

tion group (HG) Type strain/Reference Genospecies Phenospecies Remarks
1* ATCC 7966 A. hydrophila A. hydrophila Isolated from clinical specimens
I* BCCM/LMG 19562 A. hydrophila subsp. dhakensis A. hydrophila subsp. dhakensis Isolated from clinical specimens
1* BCCM/LMG 19707 A. hydrophila subsp. ranae A. hydrophila subsp. ranae  Pathogenic for frogs
2% ATCC 14715 A. bestiarum A. hydrophila-like Isolated from clinical specimens
3% ATCC 33658 A. salmonicida A Salmoma.dc.l subsp. Nonmotile fish pathogen
salmonicida
3* ATCC 33659 A. salmonicida A. salmonicida subsp. Nonmotile fish pathogen
achromogenes
3% ATCC 27013 A. salmonicida A salmomczd.a subsp. Nonmotile fish pathogen
masoucida
3% ATCC 49393 A. salmonicida A. salmonicida subsp. smithia Nonmotile fish pathogen
3* b 043C43_18 64’ Popoff unnamed A. hydrophila-like Isolated from clinical specimens
4%* ATCC 15468 A. caviae A. caviae Isolated from clinical specimens
5A* CDC 0862-83 A. media A. caviae-like Isolated from clinical specimens
5B* CDC 0435-84 A. media A. media
6* ATCC 23309 A. eucrenophila A. eucrenophila
7* CIP 7433, NCMB 12065 A. sobria A. sobria
8X* CDC 0437-84 A. veronii A. sobria
8Y* ATCC 9071 A. veronii A. veronii biovar sobria Isolated from clinical specimens
9* ATCC 49568 A. jandaei A. jandaei Isolated from clinical specimens
10* ATCC 35624 A. veronii biovar veronii A. veronii biovar veronii Isolgte'd from clinical specimens,
ornithine decarboxylase positive
11+ ATCC 35941 unnamed Aeromonas spp- (ornithine
positive)
12% ATCC 43700 A. schubertii A. schubertii Isolated from clinical specimens
13* ATCC 43946 Aeromonas Group 501 A. schubertii-like Isolated from clinical specimens
14* ATCC 49657 A. trota A. trota Isolated from clinical
15* ATCC SLZ gg » CECT A. allosaccharophila A. allosaccharophila
16* ATCC 51020, A. encheleia A. encheleia Pathogenic for eels
17* BCCM/LMG 1754 A. popoffii A. popoffii
Unassigned* MTCC zﬁ?’ NCIM A. culicicola A. culicicola Isolated from mosquitoes
Unassigned [20] A. eucrenophila A. tecta Isol:ated from clinical and
environmental sources
Unassigned [21] A. trota A. aquariorum Isolated from monkey faeces
. . Lo Isolated from aquaria of
Unassigned [22] A. popoffii A. bivalvium ornamental fish
Unassigned [23] unnamed A. sharmana Isolated from bivalve molluscs
Unassigned [24] A. encheleia A. molluscorum Isolated from bivalve molluscs
Unassigned [25] A. schubertii A. simiae Isolate('i from midgut of
mosquitoes
Unassigned [26] A. jandaei A. culicicola Isolated from a warm spring

* Carnahan and Joseph [7].

strains are frequently found in water sources [36]. In the
Netherlands, a drinking water standard of 200 cfu/100 mL at
25°C has been established for Aeromonas [37].

Maalej and colleagues [38] studied seasonal distribution
of Aeromonas populations in urban effluent and natural

seawater. They found 1.48 X 10° to 2.2 x 10% cfu/100 mL
in the effluent, while seawater had counts lower than the
detection limit to 7.9 x 103 cfu/100 mL, and the seasonal
abundance of Aeromonas was inversely related to the seasonal

density of fecal coliforms.
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Bonadonna et al. [39] studied the incidence of bacteria of
anthropomorphic origin and those of autochthonous origin
using model systems for prediction of public health risk
to marine bathers. The resulting model used salinity, total
coliforms, fecal coliforms, Escherichia coli, and location as
analytical variables for presence of aeromonads. In the study,
the presence of Escherichia coli and fecal coliforms were
associated with lower Aeromonas counts, while prevalence
of total coliform was associated with higher Aeromonas
densities. Fecal coliforms and high salinity was associated
with higher Aeromonas population. The complexity of the
relationship between anthropomorphic and autochthonous
bacteria confounds development of a predictive models for
estimating public health risk of recreational exposure to
marine waters.

4.2. Occurrence of Aeromonas in Food. Aeromonads have
been isolated from food animals like fish, shellfish, meats,
dairy products, and fresh vegetables. However, only few food
borne outbreaks have been documented [28]. In a survey of
all foods of animal origin carried out in India, acromonads
was isolated from fish (22%), snails (6.25%), and quail eggs
(18%), buffalo milk (2.8%), and goat meat 8.9% [40]. These
findings were in agreement with those of Tsai and Chen
[41], who reported aeromonads in 22.2% of fish samples.
Abbey and Etang [42] reported isolation of aeromonads
in 28-29% of snails in Nigeria. Igbinosa and colleagues
[43] also reported incidence of Aeromonas from some food
samples including vegetable samples (35%), fresh fish (67%),
smoked fish (70%), shrimps (60%), poultry (80%), meat
(54%), meat products (80%), and raw milk (85%) in Benin
City, Nigeria. Neyts et al. [18] reported the presence of
Aeromonas species in densities of <2logiy to >5logo cfu/g
in 26% of vegetable samples, 70% of meat and poultry
samples, and 72% of fish and shrimp samples in 68 food
samples.

4.3. Occurrence of Aeromonas in Animal. The isolation of
Aeromonas species from diseased fish, turtles, alligators,
snakes, and frogs was the first implication of Aeromonas as
animal pathogens [44]. A. salmonicida and A. hydrophila
cause furunculosis, ulcerative disease, hemorrhagic disease,
red sore disease, and septicemia in fish [45]. Lehane and
Rawlin [46] investigated zoonoses acquired from fish and
reported that aeromonads caused cellulitis, myositis, and
septicemia as a result of injuries from handling fish, working
in aquaculture, or keeping fish as pets. Also, Aeromonas
species have long been recognized as pathogens of amphib-
ians and reptiles [47].

A. hydrophila have been isolated from feces of normal
horses (6.4%), pigs (9.6%), sheep (9.0%), and cows (21.1%)
[48]. The total fecal carriage rate in animals is slightly
higher than that in normal humans, which is <1 to 7%
for most studies, although some studies report higher rates
[49]. Figura and Marri [50] isolated Aeromonas species from
the feces of domestic animals and found higher frequency
of A. hydrophila than A. caviae. Stern et al. [51] isolated
aeromonads from 3 of 21 turkeys and 1 of 32 cows, but none

was detected from 22 pigs and 24 sheep. Gray and Stickler
[52] reported findings of A. hydrophila predominantly in
cow feces and A. caviae in pig feces. Also, Hathcock et al.
[53] reported the isolation of Aeromonas species from feces,
bedding, and drinking water of healthy cows and pigs.

Foods of animal origin including contaminated ani-
mals may play significant roles in the transmission of the
aeromonads from food or animals to humans and animal
feces appear to be the major source of contamination of
foods. Aeromonads have recurrently been isolated from meat
and edible organs of sheep and poultry, fish and seafood, raw
milk, red meats, as well as pork and beef [54]. A. hydrophila
was also isolated from diseased cyprinid loach in Korea [55].
The presence of aeromonads in food of animal origin may
pose a public health problem for humans who come in
contact with such animals.

4.4. Occurrence of Aeromonas in Human. Humans carry
Aeromonas species in their gastrointestinal tract both in
symptomatic and asymptomatic individuals. The rates of
faecal carriage in persons in the absence of disease in
developed countries range from 0% to 4% [56], while the
isolation rate from persons with diarrheal illness ranges from
0.8 to 7.4% [57].

Sinha et al. [58] reported aeromonads in 6.5% of all
patients in India, while in Hong Kong, Chan et al. [59]
documented aeromonads in 6.9% of adult patients with
acute diarrhoea. Others reported isolation rates from symp-
tomatic patients from 0.04% to 21% [60, 61]. In Limpopo
Province of South Africa, Obi and Bessong [62] reported
the isolation of Aeromonas sp. from 13.3% HIV patients
with chronic diarrhoea in rural communities. Immunocom-
promised people can also suffer from Aeromonas-associated
chronic diarrhoea. In Saudi Arabia, Ibrahim and Colleagues
[63] reported two cases of chronic colitis from immunocom-
promised patients associated with A. hydrophila.

5. Pathogenesis and Virulence Factors

Aeromonas species produces a broad range of extracellular
enzymes, some of which are thought to contribute to patho-
genesis. Virulence of aeromonads depends on several factors
and also incompletely understood despite decades of intense
research [64]. Aeromonas is said to be pathogenic because
it possess all the requirements of pathogenic bacteria. It
attaches and enters into host cells through production
of flagella, pili and adhesins [65]. Multiplication in host
tissue is assisted by the production of siderophores and
outer membrane proteins, while production of capsule, S-
layer, lipopolysaccharide, and porins contributes to their
resistance to host defenses mechanism. Enterotoxins, pro-
teases, phospholipases, and hemolysins cause damage to
host cells leading to cell death [65]. Several extracellular
products are elaborated, including cytotoxic and cytotonic
enterotoxins, hemolysins, and various hydrolytic enzymes.
The occurrence of both Type II and Type III secretions
systems has been demonstrated [66], including the presence
of several virulence factors such as enolase.



Some aeromonads produce a range of cell surface and
secretory proteases that may augment their virulence [67].
It is well documented that a significant proportion of the
A. hydrophila isolated from chlorinated and nonchlorinated
water contained genes responsible for enterotoxigenic or
cytotoxic activity [68]. Also, environmental temperature
has been reported to be a parameter in the expression of
virulence factors. A. hydrophila isolated from the environ-
ment produced significantly less enterotoxins when grown at
37°C compared to 28°C, while the clinical isolates examined
produced more enterotoxins at 37°C than at 28°C [69].
The temperature of the human body is approximately 37°C;
therefore, strains that produce virulence factors at this
temperature are likely to be more significant as human
pathogens.

6. Clinical Infections

Clinical indications of Aeromonas infection usually depend
upon the site and severity of infection [70]. Wound infec-
tions often result in cellulitis and rarely necrotizing fasciitis.
Septicemia may accompany wound infection or may be
secondary to systemic diseases such as cirrhosis, cancer,
biliary disease, diabetes, or diseases resulting in gastrointesti-
nal perforations [71], and dissemination may give rise to
meningitis or endocarditis. Pneumonia is infrequent and it is
usually associated with aspiration, such as in near drowning
[72]. Gastroenteritis symptoms vary from mild self-limiting
to dysentery or cholera-like illness. Both gastrointestinal
and extraintestinal infections are now known to occur in
previously healthy hosts as well as immunocompromised or,
otherwise, susceptible individuals [15].

6.1. Gastrointestinal Infection. Aeromonas species have in-
creased in recent years since they cause gastroenteritis,
cellulitis, peritonitis, meningitis, and pneumonia in im-
munocompromised humans and disseminated infections in
immunocompromised hosts [11]. In developing countries,
A. hydrophila is also known to cause diarrhea in children
[73] and travelers [74]. Known risk factors that predispose
humans to the disease include drinking or swimming in
contaminated water and also ingestion of contaminated
food.

Though Aeromonas species have been recognized as
enteric pathogens, their mechanisms of pathogenicity remain
vague. A. cavige bind to mucosal epithelial cells [35], and
the majority of aeromonads related to gastroenteritis include
A. veronii biovar sobria (HG-8/10), A. hydrophila (HG-1),
and A. caviae (HG-4), though A. veronii biovar veronii (HG-
8/10), A. trota (HG-13), and A. jandaei (HG-9) occur rarely
[11]. Gastroenteritis attributed to A. sobria was characterized
by acute watery, abdominal pain, vomiting, diarrhea, and
fever [70]. Goldsweig and Pacheco [75] also reported on
infectious colitis caused by Aeromonas species.

6.2. Extralntestinal Infection. Extraintestinal infections of
environmental origins arise directly from soil or water con-
tact, or indirectly by ingestion and bacteremic dissemination
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of aeromonads from the gastrointestinal tract [11]. The two
major routes of infection are environment-water-animals
complex and ingestion of contaminated foods [71].

In immunocompromised persons, bone infections
appear to be a result of blood-borne spread [15]. In healthy
persons, bone infection is next to tissue trauma, often arising
after contamination in freshwater [14]. Invasive infections
at other sites occur primarily in immunocompromised
patients, particularly those with leukemia, malignancy,
cirrhosis of the liver, or immunosuppression cases [15].
In cases of Aeromonas septicemia different from those of
soft-tissue infections, the origin of the organism and portal
of entry is yet unclear. An endogenous source has been
proposed as the locus of infection from which subsequent
bloodstream invasion arises [72].

7. Epidemiology and Disease
Outbreak in Aeromonas

Aeromonads are commonly isolated from drinking water
[12, 30], and temporal and seasonal relationship between
presence of aeromonads in drinking water and their presence
in the stools of patients with gastroenteritis have been
reported [11]. Yamada et al. [76] reported incidence of
Aeromonas infections in Japanese travelers to developing
countries. Aeromonas species have been reported as the cause
of diarrhea in 2% of travelers to Africa, Latin America and
Asia [77, 78]. Human carriage of Aeromonas species could be
symptomatic or asymptomatic. In developed countries, the
rates of fecal carriage in asymptomatic persons range from
0% to 4% [34], while the isolation rate from individuals with
diarrheal illness ranges from 0.8 to 7.4% [35]. The rate of
recovery among children with diarrhea vary geographically:
0.62 to 4% was reported in Malaysia [79]; 2% in Sweden [34];
0.75% in Nigeria [80]; 4.8% in Switzerland [81]; 2.3% in
Taiwan [82]; and 6.8% in Greece [83]. In India, aeromonads
was reported in 6.5% of all patients [36]. Chan et al. [37]
also documented the incidence of aeromonads in 6.9% of
adult patients with acute diarrhea in Hong Kong. Previous
reports on incidence rates from symptomatic patients range
from 0.04% to 21% [38, 39]. Generally, the isolation rates
in human fecal specimens vary as geographical areas, food
habits, level of sanitation, patient populations, and isolation
methods affects the recovery rates [38].

8. Diagnosis and Detection of
Aeromonas Species

To detect outbreaks efficiently, public health surveillance,
and diagnostic procedures for Aeromonas species require
both sensitivity and specificity. The approaches of Abbott
et al. [4] and Carnahan and Joseph [7] make it possible to
identify nearly every isolate to species levels.

8.1. Culture-Based Detection Methods. Aeromonads grow
on isolation media, and a huge number of selective and
differential isolation media have been developed for the
recovery of Aeromonas species from the environment, foods,
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and clinical specimens [84]. Comparative study suggest
that no single medium results in optimum recovery of
aeromonads, and combinations of different isolation media
and methods are frequently employed by direct plating,
membrane filtration, or multiple tube tests for determining
most probable numbers. The membrane filtration method,
EPA Method 1605, has been authenticated for the isolation
of A. hydrophila from drinking water samples [13].

Several culture enrichment and culture media have been
evaluated for the recovery of aeromomads from foods
[31]. Starch ampicillin agar (SAA) and bile salts inositol
brilliant green agar (BIBG) with initial enrichment in
alkaline peptone water (APW) or tryptose broth containing
ampicillin (TSB-30, ampicillin 30 mg/L) are recommended
simultaneously with commercially available media such as
Aeromonas Medium (Ryan’s Medium). Starch glutamate
ampicillin penicillin (SGAP-10) medium was used in the iso-
lation of aeromonads from sewage sludge [85]. This medium
is highly selective, and it has been used to detect aeromonads
from foods and other samples matrices. Aeromonas species
grow readily in blood culture media and on 5% sheep blood
agar used in clinical laboratories for detection and isolation
of human pathogens from normally sterile body sites [31].
Isolation of aeromonads from contaminated samples such
as feces require the use of selective and differential media
such as McConkey agar, cefsulodin irgasan novobiocin (CIN)
agar, or blood ampicillin agar (10 mg/L ampicillin). To
facilitate recovery of aeromonads from highly contaminated
samples such as feces, enrichment broths such as alkaline
peptone water are incubated overnight and subcultured
onto CIN agar and blood ampicillin agar [85]. Culture
plates are then incubated aerobically at 35°C for 24-48 h.
Aeromonas species produce distinctive colonies, with or
without hemolysis on blood agar. Colonies are screened by
carrying out oxidase test and identified using biochemical
methods or commercially-available bacterial identification
kits [13, 85].

8.2. Molecular Detection and Identification Methods. Poly-
merase chain reaction (PCR) methods have been developed
to detect the presence of Aeromonas species in a wide range
of samples. Ozbas et al. [86] developed a PCR method for
the detection of A. hydrophila in raw milk. The detection
limit was 2logo cfu/g and the detection rate was 23% for
PCR method and 14% for culture method. Stine et al.
[87] constructed a microarray of DNA probes to study the
population dynamics of microbial communities and used the
microarray to study population dynamics and interactions
of marine bacteria in coastal waters where acromonads were
found to make up a large proportion of the microbial flora.
Galindo and coworkers [88, 89] also used microarrays to
detect A. hydrophila cytotoxic enterotoxin-inducing genes
in macrophages, thus revealing the potential of microarrays
in elucidating intracellular mechanisms of pathogenesis.
Galindo et al. [90] used microarrays and proteomics to
examine the effects of cytotoxic enterotoxin on human
epithelial cells.

Some researchers have developed probes for the detection
of various Aeromonas species [91, 92]. Jun et al. [55]

employed the restriction fragment length polymorphism
(RFLP) method to distinguish A. salmonicida and A. bes-
tiarum. The genetic heterogeneity of aeromonads as the
result of crossover in ribosomal sequences makes it unlikely
that 16S ribosomal DNA will be a practical means of dif-
ferentiation of species [93], since additional endonucleases
must be added as new species are recognized, resulting in an
unwieldy and overly complex typing system [94, 95].

The 16S-23S intergenic spacer regions were sequenced,
and it was found that the resulting phylogeny did not
agree with the results of 16S ribosomal DNA and DNA-
DNA hybridization studies [96]. The sequence analysis of
the gyrB gene was used to construct a phylogenetic tree of
all 17 hybridization groups [97] and Aeromonas culicicola
was grouped with Aeromonas veronii, but it grouped with
Aeromonas jandaei based upon 16S ribosomal gene sequence.
The sequence analysis of the polymerase chain reaction
amplicons of the gyrB gene was viewed as a better phylo-
genetic chronometer than the 16S ribosomal gene. Yanez et
al. [98] have documented that the gyrB gene agree with the
16S ribosomal data which led to placement of the genus
Aeromonas in the family Aeromonadaceae, and gyrB gene
sequences were useful in resolving discrepancies between
16S ribosomal gene sequences and DNA-DNA hybridization
results.

Minana-Galbis et al. [99] also examined the genetic
diversity among A. hydrophila, A. bestiarum, A. salmonicida
and Aeromonas popoffii by multilocus enzyme electrophore-
sis (MLEE). Aeromonas popoffii and A. bestiarum were found
to be closely related this method. MLEE has been used in
genomospecies determination since 1991 [100]. Multilocus
sequence typing (MLST) using the four gene loci of 16S
rDNA, recA, gyrB, and chiA has revealed the taxonomic
limitations of 16S rDNA alone [101].

9. Prevention and Treatment

As highlighted previously, aeromonads are ubiquitous in
many environmental waters. As a result, they are present in
most source waters used for drinking water production. The
existing techniques used for treatment and disinfection are
effective in minimizing the level of aeromonads in the fin-
ished drinking water. It has been reported that A. hydrophila
is usually more susceptible to chlorine and monochloramine
than coliforms [12]. The most efficient approach for con-
trolling Aeromonas growth is to limit the Aeromonas species
entering the distribution system through effective treatment
and maintenance, to maintain temperatures below 14°C, to
provide free-chlorine residuals above 0.1-0.2mg/L, and to
limit the levels of organic carbon compounds in the water
[102]. However, it is difficult to manage its growth in biofilms
(12, 102].

Rehydration therapy is adequate intervention in most
pediatric cases of gastroenteritis and watery diarrhea caused
by Aeromonas species [102]. Draining obstructions and
antibiotic therapy are effective in the management of
infection in patients with acute suppurative cholangitis
[103]. Surgical intervention might be necessary in cases



of necrotizing fasciitis. In addition, cellutis may require
debridement, and abscesses may require draining [103].

Gastrointestinal infections caused by aeromonads are
generally self-limiting, and antibiotic therapy is required
only in prolonged cases in immunocompromised hosts.
Antimicrobials are employed for only severe and unrespon-
sive cases of Aeromonas gastroenteritis [103] or extraintesti-
nal infections [71, 73].

Aeromonas species demonstrate differences in their sus-
ceptibilities to antibiotics. Clinical isolates of A. caviae
are more susceptible to ticarcillin than A. veronii and A.
hydrophila. Use of clavulanic acid with amoxicillin enhances
antibacterial activity but tazobactam did not enhance the
effect of piperacillin and A. veronii (79%) showed higher
susceptibility to cefazolin than A. caviae (53%) or A.
hydrophila (40%) [104].

Ko et al. [105] have established that minocycline and
cefotaxime administered simultaneously produced a syner-
gistic effect against A. hydrophila using a murine model. Also,
ciprofloxacin was as effective as cefotaxime-minocycline in
vitro and in a murine model, suggesting that clinical studies
are necessary [106].

10. Antimicrobial Resistance

The origins of antibiotic resistance in the environment
is relevant to human health because of the increasing
importance of zoonotic diseases as well as the need for
predicting emerging resistant pathogenic organisms [107].
Antibiotic-susceptibility pattern is also significant for selec-
tive isolation of microorganisms. The acromonads have been
regarded universally to exhibit resistance to the penicillins
(penicillin, ampicillin, carbenecillin, and ticarcillin) for quite
a long time [108]. In addition to selection of antibiotic
therapy in the clinical setting, antibiotic sensitivity pat-
terns are sometimes useful as phenotypic characteristics for
species identification, especially for clinical isolates [108].
Most of Aeromonas species show susceptibilities to amino-
glycosides, tetracycline, chloramphenicol, trimethoprim-
sulfamethoxazole, and quinolones [108]. They are also
susceptible to piperacillin, azlocillin, and the second and
third generation of cephalosporins [108]. Sen and Rodgers
[36] reported antibiotic susceptibility tests on 164 strains
of Aeromonas, and resistance to nalidixic acid (54—-62%),
ciprofloxacin (12-22%), and norfloxacin (14-19%) were
observed.

In the United States, over 90% of aeromonad strains
were susceptible to third-generation cephalosporins and
aminoglycosides and almost all the aeromonads were sus-
ceptible to quinolones [109]. Also, in the United States,
most strains were susceptible to chloramphenicol, tetra-
cycline, minocycline, doxycycline, and nitrofurantoin, but
resistant to vancomycin, clindamycin, and erythromycin.
Imipenem was reported to be efficient for treatment of
Aeromonas infections [110]. Petersen and Dalsgaard [111]
found that most of their Aeromonas strains were resistant
to the commonly used antibiotics such as chloramphenicol,
tetracycline, and trimethoprim. Huys et al. [112] found
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oxytetracycline-resistant Aeromonas strains in water from
fish farms and in hospital sewage.

The use of antibiotics in aquaculture plays an important
role in the amplification of resistance in a given reservoir.
Multiple antibiotic resistances (MARs) between Aeromonas
species have been reported globally by different authors
[36, 113, 114]. Radu et al. [115] reported the frequent
occurrence of multiple antimicrobial resistances and the
presence of similar resistance patterns in some A. hydrophila,
A. veronii biovar sobria, and A. caviae strains isolated from
fish. Most of the A. salmonicida strains isolated by Kirkan
and colleagues [116] were resistant to erythromycin, amoxy-
cillin+clavulanic acid, penicillin, gentamicin, oxytetracycline
cefuroxime sodium, and sulphamethoxazole+trimethoprim.
A. hydrophila isolated from fish samples in Mhow city,
India, showed 100% sensitivity to ciprofloxacin, cefuroxime,
ceftriaxone, cephotaxime, chloramphenicol, gentamycin,
kanamycin, nitrofurantoin, nalidixic acid, and ofloxacin,
while 62.2% and 50% of the bacteria were susceptible to
cotrimoxazole and oxytetracycline, respectively. On the other
hand, all isolates were resistant to colistin and ampicillin
[113].

Resistance to chloramphenicol is very rare in Aeromonas
species. Michel et al. [117] reported that minimum
inhibitory concentrations (MICs) of chloramphenicol
against A. salmonicida strains displayed a bimodal distri-
bution and demonstrated the existence of a large and well-
delineated resistant population. Distribution of MIC values
of chloramphenicol in A. salmonicida strains were 0.25—
2 pug/mL and 16—>256 ug/mL, whereas in motile aeromonads
it ranged from 0.06 ugmL™! to >256 ug/mL. Conversely, Guz
and Kozinska [118] findings revealed that Aeromonas species
are susceptible to chloramphenicol (MIC >0.06-2mg/L,
MICyj 0.5 mg/L). Chloramphenicol is hazardous to humans,
it causes an idiosyncratic, aplastic anemia, and at present, it
is extremely illegal to use in food animals.

Edwards and coworkers [119] documented antibiotic
resistance in Aeromonas species isolated from a eutrophic
lake in England. Gofii-Urriza and colleagues [32, 120]
reported antibiotic resistance to trimethoprim (42%),
pipemidic acid (67%), streptomycin (65%), cephalothin
(93%), cefoxitin (56%), ticarcillin (87%), sulfamethoxazole
(90%), naladixic acid (59%), ampicillin (99%), oxolinic acid
(67%), and tetracycline (14%) in Aeromonas species isolated
from European rivers. Susceptibility to fluoroquinolones
differ from 54% to 98%. Most strains were susceptible
to ciprofloxacin, fosfomycin, colistin, gentamicin, cotri-
moxazole, cefotaxime, chloramphenicol, tobramycin, and
imipenem [120], and urban wastewater effluents are thought
to be a contributing factor to the increasing rate of antibiotic
resistance in environmental aeromonads [120].

11. Public Health Control

The prevention of the spread of Aeromonas strains involved
in diarrhea depends on ensuring appropriate sanitary
measure like proper food preparation, hand-washing, and
efficient sewage disposal system. Proper surveillance of water,
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food, and sanitation facilities, using public health diagnostic
and detection procedures is essential to protect individuals
including infants from Aeromonas strain diarrhea.

In the aquaculture environment, management consists
of disposal of diseased animals and water treatment to
control the densities of aeromonads in aquaculture systems.
Maintaining high standards of water quality, temperature
control, disinfection of equipment, and stress reduction
reduce the prevalence of disease [102]. In aquaculture system
the quality of the water is of paramount importance in
the prevention of contamination of fish or plants grown in
wastewater ponds. Reliance has been placed principally on
minimizing the risk of pathogen transmission by thorough
cooking of the products, but this approach has not always
been satisfactory and, where the pond products are eaten
uncooked, no health protection is provided. Therefore, the
presence of potentially pathogenic and multidrug-resistant
Aeromonas strains in surface waters remains of significant
health implication. Continuous monitoring of surface waters
is vital to identify potential water-borne pathogens and to
reduce the health risk caused by the Aeromonads.

12. Conclusion

Aeromonas infection remains among those infectious dis-
eases of potentially serious threat to public health. Aeromonas
disease outbreaks have created a painful awareness of the per-
sonal, economic, societal, and public health costs associated
with the impact of contaminated water in the aquatic milieu.
There is evidence to suggest that the prevalence of Aeromonas
infections may be dramatically underestimated in developing
nations and that routine endemic exposure to waterborne
and food-borne pathogens may occur more frequently than
originally perceived. A variety of demographical, societal,
environmental, and physiological emergence factors likely
play critical roles in enhancing the frequency of transmission
of pathogens to hosts and the increasing trend in antibiotics
resistance in the bacteria makes extended studies on the
bacteria imperative and this is subject of investigation in our

group.
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